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Abstract. Two-level systems (TLS) interacting with conduction electrons are possibly described by the
two-channel Kondo Hamiltonian. In this case the channel degeneracy is due to the real spin of the electrons.
The possibility of breaking that degeneracy (conservation) has interest on his own. In fact, we show that the
interaction of the conduction electrons with a spin-orbit scatterer nearby the TLS leads to the breaking of
the channel degeneracy (conservation) only in the case of electron-hole symmetry breaking. The generated
channel symmetry breaking TLS-electron couplings are, however, too weak to result in any observable

effects.

PACS. 72.15.Cz Electrical and thermal conduction in amorphous and liquid metals and alloys —
72.10.Fk Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo

effect) — 71.55.-1 Impurity and defect levels

1 Introduction

In the general form of the orbital Kondo model a single
particle is moving between two localized orbitals and is
interacting with the conduction electrons in a metal. This
orbital Kondo model has been justified by a detailed scal-
ing analysis [1-4], though it is presently unclear if the two-
channel Kondo fixed point can be experimentally reached
in the case of TLS’s [5-7]. The particle can be an atom
or a group of atoms. Similar orbital models emerge in the
context of 4f heavy fermion impurities [2]. In these mod-
els the real electronic spin variable does not occur in the
coupling constants, thus there is a spin degeneracy in the
variables of the particles and all interaction terms are di-
agonal in the conduction electron spin. In realistic ma-
terials, however, spin-orbit interaction is always present,
and it always induces cross-scattering between different
spin orientations. It is, therefore, a fundamental question,
whether spin-orbit interaction can break this channel sym-
metry and invalidate the 2CK description or not.

Similar influence of the crystalline field on the n-
channel orbital Kondo problem has been investigated ear-
lier by deriving and solving Bethe ansatz equations [8].
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In this paper we examine the possibility of breaking the
channel degeneracy (conservation) of the orbital Kondo
problem due to the interaction of the conduction elec-
trons with a spin-orbit scatterer nearby the TLS, using
the renormalization group method in leading logarithmic
order. It turns out, that in case of electron-hole symmetry
the spin-orbit interaction has no effect on the two-channel
Kondo behavior. In contrary, in case of electron-hole sym-
metry breaking, new, relevant channel symmetry breaking
couplings are generated between the TLS and the conduc-
tion electrons [9], which are driven by the rather small
ratio of the TLS level splitting and the electronic band-
width. As a consequence, despite of its relevance in the RG
sense, this term cannot influence the two-channel behavior
in an observable range of temperature, since the scaling is
stopped by the infrared cutoff (TLS level splitting) long
before the corresponding crossover is reached.

2 Model and calculation

We consider a TLS interacting with conduction electrons
which are also interacting with a spin-orbit scatterer at
a position R with respect to the TLS (see Fig. 1). The
TLS-conduction electron system is described by the usual
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Fig. 1. The TLS and the spin-orbit scatterer in a distance R.

Hamilton operator [10]
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where aleU creates an electron with momentum k, an-
gular momentum [, m and spin o, o’ stand for the Pauli
matrices, Ap and A are the spontaneous transition and the
energy splitting between the two TLS states, respectively.
Choosing the z axis in an appropriate way and assum-
ing axial symmetry, the TLS is strongly coupled only to a
reduced number of channels e.g. to those with azimuthal
quantum number m = 0 of the conduction electrons, thus
the m indices are dropped and only two angular momenta
1=0,1 are kept [10].

The spin-orbit scattering is assumed to be due to spin-
orbit scattering centers. In the following a single center
at position R (see Figs. 1 and 2) is considered. In case
of many scatterers the contributions are additive as the
scattering strength is weak. The scattering Hamiltonian
is given in two different coordinate systems, one is locked
to the TLS (z, vy, z) (z || TLS axis) and the other one to the
spin-orbit center (z’,%',2’) (2 || R) as shown in Figure 2.

For the scattering a model Hamiltonian is used
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where g is the coupling strength which depends on the
position of the scatterer (R and angle 6 in Fig. 2), the pa-
rameters of the spin-orbit scatterer’s d-level, and on the
strength of the spin-orbit interaction. Considering the az-
imuthal momentum only the channels coupled to the TLS
is considered (m = 0), thus the angular and azimuthal mo-
menta are defined in the coordinate system (z,y, z) locked
to the TLS. For convenience the electron spin o is defined
in the system (2/,y’,2’) at the center. The Hamiltonian
Hgo couples the spin flip processes to the change of the
angular momenta. If the center is rotated around the z axis
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by angle 7 then the direction ¥’ is changing to the oppo-
site. Thus in the simultaneous presence of a pair of the
centers obtained by rotation the electron spin and orbital
momentum are decoupled as the coupling to the two cen-
ters have opposite signs in the frame of TLS. That has
an important consequence, namely only inhomogeneous
distribution of the centers results in finite coupling by ex-
hibiting certain spin direction.

The Hamiltonian given by equation (2) can be de-
rived using specific models. Such a model was proposed in
the study of magnetic spin anisotropy of a single Kondo
impurity near the surface of the metal, where the spin-
orbit scatterers responsible for the anisotropy are the
host atoms of the metal showing an asymmetric distri-
bution around the Kondo impurity due to the metallic
surface [11]. The derivation of the Hamiltonian Hgo is
sketched in the Appendix closely following Section 3 of
reference [11].

The calculation of the correction to the electron
Green’s function due to spin-orbit interaction was per-
formed using equation (2). The first order correction 6G()
in the spin-orbit coupling is given by

5GL) (0,0,iw,) = GO0, R, iw,)go,0v, GO (R, 0, iw,).
(3)

After simultaneous rotation of both coordinate sys-
tems to a new frame locked on the TLS (x ||TLS axis)
and a new one at the center (2’ || R) (see Fig. 2), the
scattering amplitude contained by §G(!) can be summed
up to infinite order (i.e. infinite number of scatterings on
the same spin-orbit scatterer is considered), resulting in
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Calculating the corresponding change in the conduc-
tion electron density of states in first order in g and using
the linearized dispersion k = kp+ % near the Fermi level,
we get for the spin-dependent part

dpr(w =~ 0)

= Aoj,0%,, )
o i (5)

where A depends on g, the conduction electron density of
states at Fermi level for one spin direction pg, and in lead-
ing order it is Nm’ therefore only the first neighboring
atoms around the TLS give non-negligible contribution.

We use the above result to examine the TLS-conduc-
tion electron system in case of finite A. The new TLS-
electron couplings, obtained by introducing the dimen-
sionless TLS-electron couplings and taking into account
the above changes in the conduction electron density of
states, are

v¥ = poV¥ — " =0"V1+ AV1I— A
v =pVY — Y =0YV14+AV1—A (6)
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Fig. 2. The TLS (z,y,2) and the local (z’,y’, 2’) frame. The simultaneous rotations to the new TLS and the new local frame

are also illustrated.

where the different signs in front of A’s are due to the
off-diagonal behavior in [ and {’. Then the term with cou-
pling ~v* in the Hamiltonian (1) is replaced by the spin
dependent term

V207 0% 01001 — V707 0 (07060 + AdyroZ,), (7)

where v, = poV,, and [,l’, ,0’ correspond to the orbital
momentum and the real spin of the conduction electrons,
respectively, and a, o’ label the TLS states.

To investigate the possibility of breaking the channel
degeneracy (conservation) by the spin-orbit interaction,
we performed a scaling analysis in leading logarithmic ap-
proximation for general, v{,‘pog, W01,0%,, couplings where
w,v,p=0,z,7,2, and 0¥ is the unity matrix. In the calcu-
lation we used p(e) = po(1 + $¢) for the conduction elec-
tron density of states in order to account for the electron-
hole symmetry breaking in a simple way [9,12], (where
Dy is in the range of the electronic bandwidth which is
not subject of scaling and |a| < 1).

The generating diagrams of the leading logarithmic
scaling equations are shown in Figure 3 and the corre-
sponding scaling equations read as
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where g#1#2#3 ig the usual Levi-Civita symbol for pq, pe,
n3 = T,Y, 2, EOMML? = €H10M2 = 5#1#20 = 77:5#1#2; and
x=In %. We can see immediately that in the presence

Fig. 3. The diagrams generating the leading logarithmic scal-
ing equations. The solid and dotted lines represent the con-
duction electrons and the TLS, respectively, and the crosses
indicate the TLS level splitting.

of electron-hole symmetry (i.e. & = 0) we reproduce the
usual TLS-electron scaling equations, thus the spin-orbit
interaction cannot influence the behavior of the TLS-elect-
ron system in this case.

Together with the initial conditions (v;,(0) = Jsp0s
for s,p = x,y, z, v§.(0) = Av® and the other v’s are zero),
the above scaling equation system is closed for the sub-
space p = 0, z, thus we can restrict the general equations
to those values and then we divide the relevant couplings
to spin independent and spin dependent parts as

H Iz
B Uyt +UVl u

vl = 5 =l
p iz
Lo
ol = ———= =k, (9)

where v‘;T and ¢!, are the couplings for up and down
electron spins, respectively. The scaling equations for the
spin independent and spin dependent couplings then read
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where the initial values are v;(0) = 5,05, v5(0) = 0,
vp(0) = 0, v§(0) = 0, 6v§(0) = Av*, and the other spin
dependent couplings are zero.

After linearization in the spin dependent couplings,
the scaling equations for the spin independent couplings
decouple from the others. In leading order in %—A, =L

0 0
(AT = A, AY = Ay, A, = 0 according to the coordinate
system used), the equations and, thus, the solutions for
the spin independent couplings are the usual ones [2]

(@) = o2(x) = v (@) = v2(x) = vi (&) = 0

S

’Up(CL') - 5spvp(x) for s,p=uz,y,z, (12)
OLAU
Do

except that couplings v§ ~ DA, vg ~ are generated.

Assuming that these solutions are isotropic [2—4]
(v*(x) = v¥(x) = v¥(z) = ¥(z)) as is the case around
r = lnD— the equations for the spin dependent cou-

plings in leadlng order in %, afo form a differential

equation system with constant coefficients which can
be solved by first order perturbation theory. Although
the solutions for most of the spin dependent couplings
remain zero (v, dv§, dvf, dvg, dvl, dv¥, dvY, dvZ) or
unrenormalized (dv§), new types of couplings dv?, Jv¥,
dv;, dvy are also generated which are spin-dependent
and relevant (growing like ¥(z )O‘A U(x )“AO) thus in
principle they break the channel degeneracy (conserva-
tion) of the two-channel orbital Kondo problem. It is
important to emphasize again, that these new couplings
are generated only if the electron-hole symmetry is
broken. However, using %, O‘DAOO ~ 107° in the scaling
equations, they are too small to influence the two-
channel behavior in an observable range of temperature.

3 Conclusions

To summarize, in this paper we examined the possibil-
ity of channel degeneracy (conservation) breaking of the
two-channel orbital Kondo problem by the spin-orbit in-
teraction of the conduction electrons. The calculation was
performed in the TLS model. It turned out that in case
of electron-hole symmetry breaking, the interaction of the
conduction electrons with a spin-orbit scatterer in a po-
sition R according to the TLS, new, relevant, real spin
dependent (thus channel degeneracy (conservation) break-
ing) couplings between TLS and conduction electrons are
generated. However, the corresponding crossover between
the 2CK and 1CK behavior cannot be reached as the fac-

tor M or ‘XDAO“ is contained in the scaling equations of the

channel degeneracy (conservation) breaking terms, which
is very small. Thus, the channel symmetry breaking is
driven by A or A, but the same quantities stop the scal-
ing long before the crossover is reached. This situation is
very similar to the commutative TLS model with impu-
rity potential [13] where the commutative marginal line
becomes unstable due to QAU , but the scaling region is re-
stricted also by the mfrared Cutoff Ay [12]. Thus, we can
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conclude, that although the spin-orbit interaction, in prin-
ciple, can break the channel degeneracy (conservation) of
the two-channel orbital Kondo problem, that cannot be
relevant in physical systems.
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was supported by the OTKA Postdoctoral Fellowship D32819
(0.U0.), by Hungarian grants OTKA T034243, T038162 and
grant No. RTN2-2001-00440.

Appendix

We describe the spin-orbit scatterer by an Anderson-like
(I = 2) model with parameters g9 and Vimim (R) as [11]

Hsfo =E£0 Zbingbmcr
mo

+ Z <Vkml/m’ (R) bingakl’m/a + hC)
kl'mm'c
+A D (m[Lim')(o]o|0")bl 0 bmor (13)

/
mm]
oo

where bf  creates an electron on the spin-orbit scatterer
orbital labeled by the quantum numbers m, o and A is the
strength of the spin-orbit interaction. The hybridization
matrix element, Vi m (R) depends on the relative posi-
tion of the two coordinate systems with origin at the TLS
and the spin-orbit scatterer, respectively [11] (see Fig. 2).

Considering the process in which a conduction electron
with I/, m/, o’ jumps on the localized d-level of the atom,
then the spin-orbit scattering is taken into account by
the first order of the perturbation theory on the localized
d-level and finally, the electron goes back to the conduc-
tion electron band with [, m,o. That process is suitably
described in the frame (2/,y’,2’) of the center. The sum
of the angular and spin momenta is conserved. As far
as the conduction electron wave functions are spherical
waves with center at R, [ = I’ = 2, it is more suitable to
use spherical waves centered at the TLS (R = 0). In this
new sets [,1’ # 2 occurs. In reference [11] the overlap in-
tegrals of these two sets of spherical waves are calculated.
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The final form of the transition amplitude is
AV? L _ 4 Y s
w uw = —2(B o + B o + B*o ) i (14)
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where BT, B~, B? matrices changing the azimuthal quan-
tum numbers by +1, —1, 0, respectively. These quantities
depend on R due to the two overlap integrals for the in-
coming and outgoing electrons. The overlap integrals for

large distances behaves like Nmk(ﬁigm, % in channels

1 =0,1=1(TLS frame) coupled to the TLS, respectively.
Finally, the frame (2,3, 2") of the spherical waves must
be transformed to the TLS frame (x,y, z) (see e.g. simi-
lar Eq. (21) in Ref. [11]). In that TLS frame only the az-
imuthal momenta m = m’ = 0 are coupled to the TLS. For
convenience the spin variables o, ¢’ are not transformed.
At the end of a lengthy calculation due to the rotation,
the truncated Hamiltonian (2) is obtained where only the
channels coupled to the TLS are kept.
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